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CRACK STABILIZATION

IN A BRITTLE BODY USING STIFFENERS

UDC 539.3A. D. Zaikin

The behavior of a crack under uniaxial tension in the presence of reinforcement is studied. The
reinforcing members (riveted stiffeners) are modeled by point loads. Only four members nearest to
the crack are taken into account. It is shown that stiffeners allow one to arrest a crack and prevent
its catastrophic growth. Relations between the geometrical and force characteristics for which the
crack is stabilized are obtained. The stabilization mechanism is discussed.
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Catastrophic crack growth resulting in failure of a structure can be prevented by using stiffeners (attached
riveted members). Morozova and Parton [1] modeled a crack stiffener under uniaxial tension by constant opposite
point loads. Only four rivets nearest to the crack were taken into account, and the effect of other rivets was assumed
to be negligibly small. Their calculations showed that for certain combinations of geometrical parameters, the crack
is stabilized, i.e., a stable transient-equilibrium state occurs. Calculations based on the Barenblatt fracture model
were performed under the assumptions of an incompressible material and plane-strain conditions.

Using the Fourier transform and a Cauchy type singular integral equation, Parihar and Latitha [2] obtained
the stress intensity factor (SIF) of a crack subjected to four symmetric point loads. Savruk [3] derived an expression
for the SIF that, for the particular case of two forces acting on the center lines of the crack, coincides with the
solutions obtained by different methods.

The effect of stiffeners on crack behavior was thoroughly studied by Kozeko [4, 5] using a formulation similar
to that considered in [1]. The Neuber–Novozhilov integral criterion was used as a fracture criterion. The existence
of a stable transient-equilibrium state of the crack was supported by numerous calculations. It is argued [4, 5] that
the solution obtained therein differs from the solution of [2, 3], which contains discontinuities of the second kind is
therefore questionable. In the present paper, the correctness of the solution of [2] is proved and it is used to study
the mechanism of crack stabilization.

We consider an infinite plate weakened by a crack of length 2L and subjected to uniaxial tension. The plate
is loaded by the stress σ∞ at infinity. The stiffeners (rivets) are modeled by four point loads N symmetric about
the crack axis. The crack configuration, loading conditions, and coordinate axes are shown in Fig. 1.

For uniaxial tension, the mode I SIF is given by

K0
I =

√
πL σ∞. (1)

For the four point loads modeling the stiffeners, the SIF is given in [2, 3]:

K1
I (b, h) = −2N

√
L/π Re [(L2 − z2)−1/2 − 2ihz(L2 − z2)−3/2/(κ + 1)]. (2)

Here z = b + ih, κ = 3 − 4ν for plane strain (ν is Poisson’s ratio) and κ = (3 − ν)/(1 + ν) for plane stress.
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Fig. 1. Orientation of the stiffeners with respect to the crack.

Transforming the expression L2 − z2 = L2 + h2 − b2 − 2ibh = r e−iθ, in which

r2 = (L2 + h2 − b2)2 + (2bh)2, tan θ = 2bh/(L2 + h2 − b2), (3)

we obtain

(L2 − z2)−k/2 = r−k/2[cos (kθ/2) + i sin (kθ/2)],

2ihz(L2 − z2)−k/2 = 2hr−k/2{−h cos (kθ/2)− b sin (kθ/2) + i[b cos (kθ/2) − h sin (kθ/2)]}.
(4)

Substituting (4) into (2), we obtain a more convenient expression for calculating the mode I SIF:

K1
I (b, h) = −2N

√
L

π

(cos (θ/2)√
r

+
2h

(κ + 1)
√

r3
[h cos (3θ/2) + b sin(3θ/2)]

)
. (5)

The function arctan (y/x) is given by

arctan (y/x) = Arctg (y/x) + mπ, m =

⎧
⎪⎨

⎪⎩

1, x < 0, y > 0,

0, x � 0,

−1, x < 0, y < 0,

where −π/2 � Arctg (y/x) � π/2 is the principal value of the arc tangent. Therefore, the angle θ in (3) should be
calculated taking into account that m = 1 for L2 + h2 < b2. According to [4, 5], it is in the curve of L2 + h2 = b2

where discontinuity of solution (2) occurs.
Figure 2 shows isolines of the dimensionless function −K1

I (b, h)
√

L/N that are calculated by (5) for κ = 2.
The solution has no discontinuities. It is most likely that the discontinuities mentioned in [4, 5] arose from an
incorrect calculation of the function arctan θ. The shape of the isolines shown in Fig. 2 allows one to estimate the
effect of the stiffener location on the mode I SIF. It should be noted that according to the problem formulation,
the stiffeners cannot be located at the crack tip. Using simple and compact solution (5), one can easily study the
behavior of the crack for various parameters of the stiffeners. From (5), it follows that the mode I SIF increases as
the axial spacing between the stiffeners decreases and it decreases as the transverse spacing increases.

Since the stress intensity factors (1) and (2) have opposite signs, the combined action of uniaxial tension and
the stiffeners can result in a negative value of the total SIF. This problem, corresponding to rather strong stiffeners,
arises when the crack faces overlap (this situation is not considered in the present paper).

According to Irwin’s fracture criterion, a crack starts to grow when the SIF reaches the critical value KIc,
which is the material constant. In this case, the crack-initiation condition is written as

K0
I + K1

I (b, h) � KIc. (6)
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Fig. 2. Isolines of the function −K1
I (b, h)
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Fig. 3. Crack-initiation stress versus crack length for an unstiffened plate (curve 1) and a stiffened
plate at b = L0 and h = 1.5L0 (2), 0.4L0 (3), and 0.15L0 (4).

Using (1) and (6), we determine the stress that causes a crack of length 2L to grow catastrophically:

σ∞(L) � (KIc − K1
I (b, h))/

√
πL. (7)

In addition to the crack length, we determine the characteristic linear dimension of the problem in
the form L0 = (N/KIc)2. Then, in addition to the function σ∞(L), we construct the dimensionless function
σ0(L/L0) = σ∞(L)

√
L0/KIc.

Figure 3 shows a curve of σ0(L/L0) for an unstiffened plate (curves 1). This curve (in fact, this is a classical
Griffith’s curve) implies that when the SIF reaches the critical value KIc, the crack length increases catastrophically,
i.e., the body fails. In the presence of stiffeners, the behavior of the crack changes significantly (curve 2). For certain
combinations of the parameters, the crack behavior follows a different scenario (curves 3 and 4 in Fig. 3). The fact
that curves 3 and 4 contain segments with a positive derivative of the function σ0(L/L0) suggests that the crack
growth can be stabilized.
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Fig. 4. Isolines of the function H(b, h).

The crack behavior in this regime is described in [1, 4, 5]. When the load reaches the critical value, there
is a sudden transition (an increase in the crack length) to another stable state that corresponds to the segment
with the positive derivative. A further increase in the load leads to stable crack growth to certain dimensions with
subsequent catastrophic failure of the body.

The segment of the Griffith curve that corresponds to stable crack growth is possible if
dσ∞(L)

dL
� 0. (8)

In view of (2) and (7), condition (8) becomes

H(b, h) � H0, (9)

where

4H0 =
√

πL

L0
; H(b, h) = − L3

√
r5

( 6h

κ + 1
[h cos (5θ/2) + b sin (5θ/2)] + r cos (3θ/2)

)
.

The function H(b, h) depends on the location of stiffeners, and the right side of inequality (9) on the material
properties and magnitude of the point loads. Using inequality (9), one can determine the location of the stiffeners
that ensures stable crack growth (crack stabilization).

Figure 4 shows isolines of the function H(b, h) for κ = 2. The closed lobe-like isolines are inclined at an
acute angle to the crack-propagation direction. Given KIc and N , one can determine an isoline with the following
property: the stiffening members corresponding to the points enclosed by this curve ensure crack stabilization. The
zero isoline bounds a region outside which stabilization is impossible. One can see from Fig. 4 that for b = 0, it is
impossible to stabilize the crack using two stiffeners located symmetrically about the crack. Increasing the load N

leads to an increase in the region corresponding to the location of the stiffener that ensures crack stabilization.
The shape and position of the isolines H(b, h) and K1

I (b, h) allow the stabilization mechanism due to the
presence of stiffeners to be explained. Let the location of a stiffener be determined by the coordinates (bs, hs).
For definiteness, we assume that the axial spacing between the stiffeners (in the direction of the crack) is greater
than the crack length: bs > L. Once the initiation condition is satisfied, the crack starts to grow. If, however,
the crack length increases, the position of the stiffeners relative to the crack varies. In the process, the spacing
between the stiffeners normalized by the crack length decrease in both the direction of the crack axis and in the
perpendicular direction. An increase in the crack length may be thought of as a shift of the stiffener along the line
h = bhs/bs toward the coordinate origin. This shift results in an increase in the mode I SIF due to the presence
of stiffeners K1

I (b, h) (see Fig. 2); the increase being dependent on the initial location of the stiffeners. Despite the
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fact that according to (1), K0
I also increases, there exist values of (bs, hs) for which the total value of the mode I

SIF decreases. In this case, the condition for crack initiation is not satisfied and the crack is stabilized.
Let us study the main characteristics of the isolines H(b, h). We first determine the axis of the isoline lobes.

We set z = L(1 + ρ eiϕ). Then, for the given ρ0, there exists a value of the angle ϕ0 for which the function H(ρ, ϕ)
reaches a maximum value. The condition dH(ρ, ϕ)/dϕ = 0 uniquely defines the function ϕ0(ρ0, κ). An analytical
expression for the function ϕ0(ρ0, κ) is difficult to obtain, but we can study the behavior of the function H(ρ, ϕ)
for ρ � 1 and ρ � 1.

For small ρ � 1, the function ϕ0 = ϕ0(ρ0, κ) can be determined by expanding Eq. (9) into a series. If
ω = ϕ/2, keeping the first two terms of the series we obtain

H(ρ, ω) = − 3
4
√

2 (κ + 1)ρ3/2

(
sin 7ω − 2κ + 5

3
sin 3ω − ρ

4
[sin 5ω − (2κ + 1) sin ω]

)
. (10)

Equating the derivative of (10) with respect to ω to zero, we obtain

28 cos 7ω − 4(2κ + 5) cos 3ω − 5ρ cos 5ω + ρ(2κ + 1) cosω = 0. (11)

For κ = 1 and ρ = 0, the equation given above has the roots ω1 = πn/5 and ω2 = πn (n = 0, 1, . . .). The
root ω1 = π/5 is of interest. For arbitrary κ and ρ, Eq. (11) reduces to a cubic equation for cos2 ω. Solving this
equation, of the three real roots of this equation, one should choose the root that coincides with the root ω1 for
κ = 1 and ρ = 0.

The solution can be obtained by a different method. For ρ < 1, the exact value of the root of the cubic
equation differs from the value of ω1 by not more than 6◦. Therefore, solution (11) can be written as ω = π/5− α,
where α � 1. Substituting this expression for ω into (11) and retaining only terms linear in the small parameter,
we obtain α. Passing to the angle ϕ, we have

ϕ0 =
2π

5
− 2(κ − 1)

3κ + 32
cot

(2π

5

)
− ρ0D(κ), (12)

where D(κ) =
√

5(5 + 2
√

5)/[80(3κ + 32)2](4κ + a1)(4κ + a2) and a1,2 = 4 + 10
√

5 ±√
2
√

325
√

5 − 663.
We now study the behavior of the function H(b, h) far from the crack tip. Bearing in mind that ρ � 1 in

this case, from (9) we obtain

H(ρ, ϕ) = − (κ + 4) sin 3ϕ − 3 sin 5ϕ

(κ + 1)ρ3
. (13)

Solution of the equation dH(ρ, ϕ)/dϕ = 0 for κ = 1 yields ϕ0 = π/4. For 1 < κ � 3, an approximate solution can
be constructed using the fact that it is close to π/4. Setting ϕ0 = π/4 − α and bearing in mind that α � 1, we
infer that

ϕ0 = π/4 − (κ − 1)/(3κ + 37). (14)

For arbitrary ρ, the equation dH(ρ, ϕ)/dϕ = 0 is solved numerically. Figure 5 shows the calculation results
for κ = 1, 2, and 3 (curves 1, 2, and 3, respectively). Substitution of ρ0 and ϕ0(ρ0, κ) into (9) yields the value of
the isoline Hmax = H(ρ0, ϕ0). The calculation results for κ = 2 are given in Fig. 5 (curve 4). The curves calculated
for other values of κ almost coincide with curve 4 for this scale.

Curves 2 and 4 in Fig. 5 are good approximations of the equation ϕ0 ≈ 71.91 − 8.072ρ0 + 0.979ρ2
0 + 4.221

× 10−3ρ3
0 − 0.011 38ρ4

0 + 9.154 · 10−4ρ5
0 − 2.2657 · 10−5ρ6

0 (ϕ0 is measured in degrees) and Hmax ≈ 0.3149ρ−2.195
0 .

In addition to the asymptotic expressions constructed, these relations allow one to calculate the parameters of any
isoline.

To estimate the transverse dimension of the lobe, we draw two mutually perpendicular axes for the isoline of
the function H(b, h) = const. The major axis connects the crack tip to the farthest point on the isoline. The minor
axis bisects the major axis. In Fig. 4, these constructions are given for the isoline H0 = 0.5. The points at which
the axes intersect the isoline (points 0, 1, and 2) have the coordinates (b0, h0), (b1, h1), and (b2, h2), respectively.
In this case, the relations ϕi = ϕ0 ± γi and ρ0/2 = ρi cos γi are satisfied for i = 1, 2. Denoting the minor and major
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Fig. 5. Slope of the lobe axis of the isoline of the function H(b, h) to the crack (curves 1–3) and the
value of the isoline of the function H(b, h) (curve 4) versus the longitudinal dimension of the lobe:
κ = 1 (1), 2 (2 and 4), and 3 (3).

axes by q and p, respectively, we obtain q/p = (tan γ1 + tan γ2)/2. The asymptotic equation H(b0, h0) = H(bi, hi)
becomes

(2 cos γi)ng(ϕ0 ± γi) = g(ϕ0). (15)

Here n = 3/2, g(ϕ0) = ((2κ + 5) sin (3ϕ0/2) − 3 sin (7ϕ0/2)), where ϕ0 is calculated by (12) for ρ0 � 1, and n = 3
and g(ϕ0) = ((κ + 4) sin (3ϕ0) − 3 sin (5ϕ0)), where ϕ0 is calculated by (14) for ρ0 � 1. Equation (15) was solved
numerically. For κ = 1, 2, and 3, the following values of γ1 and γ2 were obtained: γ1 = 27.92, 29.17, and 30.17 and
γ2 = 31.44, 33.30, and 34.70 for ρ0 � 1; γ1 = 19.11, 19.78 and 20.38 and γ2 = 27.25, 29.55, and 31.07 for ρ0 � 1.

Thus, the isoline lobe is nearly symmetric. The major axis divides the minor axis into segments which differ
by not more than 10%. The ratio of the major axis to the minor axis varies in the range q/p ≈ 0.43–0.63. The ratio
increases as the crack tip is approached and as κ increases.
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